首页> 外文OA文献 >A multiscale parametric study of mode I fracture in metal-to-metal low-toughness adhesive joints
【2h】

A multiscale parametric study of mode I fracture in metal-to-metal low-toughness adhesive joints

机译:金属对金属低韧性粘合接头中I型断裂的多尺度参数研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The failure of adhesively-bonded joints, consisting of metallic adherends and epoxy-based structural adhesive with a relatively low toughness ~200 J/m 2, has been studied. The failure was via quasi-static mode I, steady-state crack propagation and has been modelled numerically. The model implements a 'top-down approach' to fracture using a dedicated steady-state, finite-element formulation. The damage mechanisms responsible for fracture are condensed onto a row of cohesive zone elements with zero thickness, and the responses of the bulk adhesive and of the adherends are represented by continuum elements spanning the full geometry of the joint. The material parameters employed in the model are first quantitatively identified for the particular epoxy adhesive of interest, and their validity is verified by comparison with experimental results. The model is then used to conduct a detailed study on the effects of (a) large variations in the geometrical configuration of the different types of specimens and (b) the adherend stiffness on the predicted value of the adhesive fracture energy, G a . These numerical modelling results reveal that the adhesive fracture energy is a strong nonlinear function of the thickness of the adhesive layer, the other variables being of secondary importance in influencing the value of G a providing the adhesive does not contribute significantly to the bending stiffness of the joint. These results which fully agree with experimental observations are explained in detail by identifying, and quantifying, the different sources of energy dissipation in the bulk adhesive contributing to the value of G a . These sources are the locked-in elastic energy, crack tip plasticity, reverse plastic loading and plastic shear deformation at the adhesive/adherend interface. Further, the magnitudes of these sources of energy dissipation are correlated to the degree of constraint at the crack tip, which is quantified by considering the opening angle of the cohesive zone at the crack tip. © 2012 Springer Science+Business Media B.V.
机译:已经研究了由金属被粘物和具有相对较低的韧性〜200 J / m 2的环氧基结构胶粘剂组成的胶接接头的失效。失效是通过准静态模式I进行的,稳态裂纹扩展,并且已通过数值建模。该模型使用专用的稳态有限元公式实现了“自上而下的方法”断裂。负责断裂的损坏机制被浓缩到一排厚度为零的内聚区元素上,而散装粘合剂和被粘物的响应则由跨接整个几何结构的连续元素表示。首先针对感兴趣的特定环氧胶粘剂定量确定模型中使用的材料参数,并通过与实验结果进行比较来验证其有效性。然后,使用该模型对(a)不同类型样品的几何构型的大变化和(b)被粘物刚度对粘合剂断裂能Ga的预测值的影响进行详细研究。这些数值模拟结果表明,粘合剂断裂能是粘合剂层厚度的强大非线性函数,其他变量在影响G a值的过程中具有次要重要性,只要粘合剂不会显着影响涂层的弯曲刚度即可。联合。这些结果与实验观察结果完全吻合,将通过识别和量化散装胶粘剂中贡献G a值的不同能量耗散来源来详细解释。这些来源是锁定的弹性能,裂纹尖端的可塑性,反向的塑性载荷以及在粘合剂/被粘物界面处的塑性剪切变形。此外,这些能量耗散源的大小与裂纹尖端处的约束程度相关,这通过考虑裂纹尖端处的粘结区的张开角度来量化。 ©2012 Springer Science + Business Media B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号